\(\int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx\) [419]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 80 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i}{3 d \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i \sqrt {a+i a \tan (c+d x)}}{3 a d \sqrt {e \sec (c+d x)}} \]

[Out]

2/3*I/d/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-4/3*I*(a+I*a*tan(d*x+c))^(1/2)/a/d/(e*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3583, 3569} \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i}{3 d \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i \sqrt {a+i a \tan (c+d x)}}{3 a d \sqrt {e \sec (c+d x)}} \]

[In]

Int[1/(Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((2*I)/3)/(d*Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (((4*I)/3)*Sqrt[a + I*a*Tan[c + d*x]])/(a*d*Sq
rt[e*Sec[c + d*x]])

Rule 3569

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rule 3583

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i}{3 d \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {2 \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}} \, dx}{3 a} \\ & = \frac {2 i}{3 d \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {4 i \sqrt {a+i a \tan (c+d x)}}{3 a d \sqrt {e \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.60 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {-2 i+4 \tan (c+d x)}{3 d \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[1/(Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

(-2*I + 4*Tan[c + d*x])/(3*d*Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Maple [A] (verified)

Time = 10.19 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.52

method result size
default \(-\frac {2 \left (i-2 \tan \left (d x +c \right )\right )}{3 d \sqrt {e \sec \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}\) \(42\)
risch \(-\frac {i \left (3 \,{\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{3 \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d}\) \(85\)

[In]

int(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d/(e*sec(d*x+c))^(1/2)/(a*(1+I*tan(d*x+c)))^(1/2)*(I-2*tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.98 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-3 i \, e^{\left (4 i \, d x + 4 i \, c\right )} - 2 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (-\frac {3}{2} i \, d x - \frac {3}{2} i \, c\right )}}{3 \, a d e} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(-3*I*e^(4*I*d*x + 4*I*c) - 2*I*e^(2*I
*d*x + 2*I*c) + I)*e^(-3/2*I*d*x - 3/2*I*c)/(a*d*e)

Sympy [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {1}{\sqrt {e \sec {\left (c + d x \right )}} \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

[In]

integrate(1/(e*sec(d*x+c))**(1/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*sec(c + d*x))*sqrt(I*a*(tan(c + d*x) - I))), x)

Maxima [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i \, \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 i \, \cos \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )}{3 \, \sqrt {a} d \sqrt {e}} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/3*(I*cos(3/2*d*x + 3/2*c) - 3*I*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(3/2*d*x +
 3/2*c) + 3*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))/(sqrt(a)*d*sqrt(e))

Giac [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {1}{\sqrt {e \sec \left (d x + c\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*sec(d*x + c))*sqrt(I*a*tan(d*x + c) + a)), x)

Mupad [B] (verification not implemented)

Time = 0.84 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.98 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {2\,\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,\left (-2\,\sin \left (c+d\,x\right )+\cos \left (c+d\,x\right )\,1{}\mathrm {i}\right )}{3\,d\,e\,\sqrt {\frac {a\,\left (\cos \left (2\,c+2\,d\,x\right )+1+\sin \left (2\,c+2\,d\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,c+2\,d\,x\right )+1}}} \]

[In]

int(1/((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

-(2*(e/cos(c + d*x))^(1/2)*(cos(c + d*x)*1i - 2*sin(c + d*x)))/(3*d*e*((a*(cos(2*c + 2*d*x) + sin(2*c + 2*d*x)
*1i + 1))/(cos(2*c + 2*d*x) + 1))^(1/2))